
Software Design 
Considerations for 

Multicore CPUS
S M P  d i l e m m a s  re v i s i te d



• The traditional recipe for rabbit stew begins … first catch one rabbit. 

• The recipe for successful HPC begins
…  first get the data to the functional units. 

0.0
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• We will discuss some performance issues with modern multi-core CPUs.

• Not dumbing things down very much: a modern CPU chip is a bunch of 
CPUs inside one chip. 

• Without a loss of generality, our discussion will focus on higher end CPU 
chips. 

1.0 TOPIC 
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• It is necessary to define our domain of discourse. Generally, the focus will 
be on higher end chips and boards.

• 2.1  Our Cores 
• 2.2  Our Chip 
• 2.3  Our Board
• 2.4  Summary

2.0 Definitions

4



• When someone says core, instead think "computational vehicle". 
• Just as a smart car and a 747 are different vehicles, not all cores are equal or even 

equivalent. 
• Generally GPU cores are much less capable. 

• Our high end cores are largely *INDEDENDENT* of each other with

• MMU - memory management - arbitrating both main memory and cache accesses
• FADD/FMUL or a fused FMADDer
• one or more ALUs 
• instruction decoding/processing logic
• with typical Caches:
• L1 cache 16-32 Kb each Inst / Data  latency 3-6 cycles (seamless)
• L2 cache 128-512 Kb Data             latency 8-12 cycles 

2.1 Our Cores
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• typically 4-24+ cores (whatever is latest)

• with an L3 cache of 6-16 MB  latency 25-50  cycles

• ** Note that at this level we have what used to be called a

• symmetric multi-processor (SMP).

• For whatever reasons, this term has fallen out of usage.

2.2  Our Chip
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• a board typically has 1, 2 or 4 chips  (totalling 4 – 80+ cores)

• all the chips share a large RAM (many GB)  with a latency 100-200 cycles

• **** note that a server board with 2 or 4 chips is a 
• Non-uniform Memory Architecture (NUMA)  machine. 

2.3 Our Boards 
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• A modern CPU chip is notionally an SMP, a symmetric multi-processor,  
with a large secondary store (RAM)
• A modern server board with 2 or 4 chips is notionally a NUMA, non-

uniform memory architecture machine, with a large memory (RAM)
• Over the past 20 years we observe that while microseconds became 

nanoseconds, costs in the millions of dollars became thousands of 
dollars, and a room of equipment shrank to a board, the relative 
component speeds, sizes, and costs have not changed so much in 20 
years! 
• One caveat is the impact of super linear memory/storage improvements.

2.4 Summary
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• Execution	time	for	a	fixed	task	using	n	processors	is
• T(n)	=	S	+	P/n;				

• where:
• S	is	the	scalar	(1	processor	only	part	of	a	task)
• P	is	parallel	(sharable	part	of	a	task)	

• The maximum speedup is  DEFGHIJK(s) =  L

LMN O
P

Q

3.0 Amdahl’s Law
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• Where the total work for a process is S+P 
• and S is the scalar (1 core) part of a process
• and P is the parallelizable part of a process 
• The minimum execution time is S and the maximum speedup is S/(S+P)
• The execution time using n processing elements is:   T(n) = S + P/n
Example with
S=10.0 P=90.0
Max 10X speedup

Amdahl’s Law (easy way)
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n T(n) Speedup S = 
10.0

P/n = 90.0/n

1 100.0 1.0X 10.0 90.0
10 19.0 5.263X 10.0 9.0

20 14.5 6.896X 10.0 4.5

100 10.9 9.174X 10.0 0.90
1000 10.09 9.911X 10.0 0.09

10000 10.009 9.991X 10.0 0.009



Amdahl’s Law (graph)
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• Try to fit T(n) = S + P/n.  Frequently doesn’t work.

• A better equation is:   T(n) = S +  A * P / [ n - k(n) ];

• A is the overhead of converting to parallel code. 1.05 is a good value

• k(n) is the overhead of managing n processing elements, PEs. 

• k(n) = [0.25, 1.0] is a reasonable range for moderate n

Amdahl (my way)
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• Instantiating for the sake of concreteness, we will take a 100 hour job 
where S+P=100, regardless of how much we reduce S.
• This is often realistic as reducing one time (scalar) work often requires 

compensating work in the parallel components.
• T(n)= S + P / n

“You can never be better than S”
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S T(16) T(32) T(64)
10.0 15.625 12.813 11.406

5.0 10.937 7.969 6.484

2.0 8.125 5.063 3.531

1.0 7.187 4.094 2.547

0.5 6.71 3.609 2.055

0.25 6.484 3.367 1.809



Latency (cycles) Typical size
L1 3-6 16-32KiB  Inst+Data
L2 8-12 128-1024KiB
L3 25-50 6-18 MiB
RAM 100-200 8+ GiB

Cache Latency Review
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• We assume 1 MB cache buffer (2^20) and 8 KB (2^13) memory page sizes

• 1) cache is mapped based on *physical* memory addresses 

• *** not the contiguous logical user address space

• A 1 MB cache assigns placement based on the low 20 bits of the physical 

address.  

• Pathology:  if all user physical pages are 1 MB aligned, then only a single 

8 KB cache page would be used of the 1 MB cache.

Cache Address Mapping
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• C[i] = !"#	 	% & + ( ∗ * ( ;	 i=0:n,   j=0:k

• Implemented to exceed 98% of machine theoretic (for reasonable n & k)
• *** by malicious alignment of A, B, C  SLOWED by a factor of 96

• Both function invocations had
• 1)  identical floating point (FP) operation counts
• 2) 100 % CPU utilization

Correlation function
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• Least Recently Used (LRU) is the most frequently used cache replacement 
algorithm. 
• Consider a data cache of 100 words. If we are looping on 100 words or 

less, then the first iteration runs slowly as we load the data at (say) 100 
cycles/word. Subsequent iterations access the data at 3-6 cycles/word.
• Consider a loop over 101 words. Words 1:100 load normally, then where 

does word 101 go? Word 1 is LRU and word 101 replaces it. Thus ends 
the first iteration. 
• Next iteration starts with word 1. Load from memory and it replaces 

word 2 which is now LRU. 
• Pathology: 100-200 cycles per word instead of 3-6 cycles. 

I  say cache, you think trash.
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• N-way associate caches mitigate cache physical address pathology.

• As an example, consider a 4 MB cache implemented as 4x1MB physically 
addressed caches. 
• A physical address is mapped by the low 20 bits (1 MB) and assigned to 

one of the 4 lines using LRU logic.

• This allows 4 different elements with the same  1 MB alignment to be 
concurrently cache resident. 

Associative Cache
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• If one PE modifies a memory location, then any copies of that data 
“must” be updated in the other PEs and kept consistent with the RAM. 
This is called cache coherence. Coherence is atomically maintained at the 
cache line level (not at the byte). Cache lines are typically 16-128 bytes. 
• Cache lines have a left and right half that are read and written 

consecutively.  Consider a cache line of 8 words. The left half is words 0:3 
and the right half is words 4:7. If you load word 5, the right half is loaded 
and then the left half is loaded immediately after. 
• Pathology: Consider if PE1 keeps a counter in word 0, PE2 in word 1 … 

PE8 in word 7. Because coherence is maintained  at the line level, this 
generates a horrendous wave of memory activity likely slowing the 
machine to turtle speeds. 

Cache Line Coherence
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• 1) There are as many cache replacement algorithms as can be imagined. 
Nearly all of them are too expensive to be feasible. The only real cost 
effective competitor to LRU is pseudo-random. The trade off is utilization 
versus replacement logic complexity. 

• 2) **** You can not eliminate cache pathology ****

You can hide cache pathology or make it difficult to predict, 
but you can NEVER eliminate it. 

I prefer to keep it where I can see it. 

Cache Pathology Summary
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// simple code for 1000 outputs
//  sum 10 elements then multiply by a weight

C[i] = sum (A[j][i]);   i=0:999, j=0:9
C[i] = w[i] * C[i]; i=0:999

Finally:  a kernel example Ver 1 is     S L O W
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// simple code for 1000 outputs
//  sum 10 elements then multiply by a weight
//  ver 2 is 100 times faster than Ver 1

C[i] = sum (A[i][j]);   j=0:9,  i=0:999
C[i] = w[i] * C[i];   i=0:999

Finally a kernel example Ver 2 is  F A S T  
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// simple code for 1000 outputs
//  sum 10 elements then multiply by a weight
// Ver 3 is 10% faster than Ver 2

C[i] = sum (w[i]*A[i][j]);   j=0:9,  i=0:999

Finally a kernel example Ver 3 is  F A S T E R 
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• Ver 1 & 2   10000 FADDS  1000 FMULS
• Ver 3           10000 FADDS 10000 FMULS

• Ver 1  100 seconds
• Ver 2   1.1  seconds
• Ver 3   1.0 seconds 

• WHY?

Analysis
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• You’ve done what you can reduce S by improving efficiency and shifting 
work into the parallel parts. 
• Consider a subtask with timing  T(n)=5+95/n minutes and n=16
• Task time is 5+95/16 = 10.937 minutes

• about a 9X speedup for 16 PEs

End run on S by Concurrency
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• 15 PEs will do the parallel part in 95/15 = 6.333 minutes
• 1 PE does the scalar part in 5 minutes
• Given a set of similar tasks A[0:n] 
• Defining S(A[i]) to be the scalar part and P(A[i]) is the parallelizable part

• Time per subtask 6.33 minutes

• Speedup 15.79X  

Software Pipelining (simplif ied)

26

Time
(minutes) 

PE 0 (Scalar 
work)

PE 1:15 
(Parallel work)

0.00 S(A[0])
6.33 S(A[1]) P(A[0])
12.67 S(A[2]) P(A[1])
19.00 S(A[3]) P(A[2])

P(A[3])



• For our example S=5 P=95, suppose S=5=3+2=read+write

• Maximum concurrency is max ( T[read], T[write], T(P/n) )

• Concurrency is:  

• read is the binding operation at 3 minutes and 95/31 = 3.065  

• We can fully employ  up to 32 PEs  gives 32.62X speedup

Binding operations
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Read A[i+2] Compute A[i+1] Output A[i]



• Contiguous accesses

• Separate read/write buffers

Memory Organization
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• These things really (albeit rarely) happen! 

• 1) You drop the code on a 16 PE processor and the speedup is 150X.
• 2) The run time is roughly the *square* of the number of processors.

Stranger and stranger
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# processors Run time
(hours)

1 2.0

2 1.3

4 4.2

8 14.6

16 Forget it



• Pro level HPC is harder than it looks

• Software pipelining is difficult to get right and harder to debug

• Multi PE  debugging problems can horrific,
like finding a needle in a matrix of haystacks

Combined the problems and life gets VERY interesting. 

Caveats 
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• Without any special consideration, perhaps it does.

• The most common situation is that the timing equation is

• T(n) = s + 10*P/n instead of T(n) = S + P/n

• Interesting prospect to have the task speeded up by a factor of 10 
• --- then scale poorly. 

My codes already scales, Chris.  (F U)
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