

Embedded made easy: piCore

Mark Olson Solon Technology Consulting Services 2019-01-22

Agenda

Embedded is hard
 Conventional approaches
 piCore on Raspberry Pi
 Introduction to piCore
 Getting started
 What I have learned

Embedded systems are hard

- Filthy conditions
- Arbitrary input
- Crappy power
- Unreliable connectivity
- No exception handling
- Challenging users

Embedded systems are hard

- Make it small!
- Make the screen big!
- Make it light!
- Make the battery last forever!
- Make it do complex things!
- Make it easy to use!

Typical approach to embedded

- Microcontroller and custom PCB
- Some oddball proprietary environment
- Advantages
 - robust
 - low power
 - cheap in large quantities

Typical approach to embedded

- Challenges
 - limited language and platform options
 - specialized, often proprietary, coding tools
 - limited library availability
 - high start up cost
 - uneconomical for specialized applications

Make an app!

- Apps are sexy
- All the infrastructure is provided
 - hardware
 - architecture
 - distribution
 - connectivity
 - revenue collection

Make an app!

- Challenges:
 - Robustness
 - No tactile input
 - Data is trapped in vendors ecosystem
 - Constantly chasing someone elses architecture
 - Retrieve your \$1700 iPhone from a fresh cow flop.
 Then come back and convince me this is a good idea.

Arduino

- Better option for
 - realtime
 - extensive physical interaction
- Problem
 - low level coding in C
- Rapidly getting more capable
- MicroPython offers an interesting option, but it is early days

piCore on Raspberry Pi

- Open hardware and software
- Range of readily available boards
 - single core, gumstick size, \$10
 - quad core, credit card size, \$45
- Robust and stable
- Develop with existing host based tools

piCore on Raspberry Pi

- Access to the open source community and libraries
- Familiar platform and tool sets
- Piggyback on established certifications
- Low start up cost
- Low cost in small volumes

Why not piCore on Raspberry Pi?

- hard real time
- instant start up
- analog inputs/outputs
- Buildroot
 - Much the same result, but with more difficult startup
 - Resiliency not built in
 - Option for large scale production

Introduction to piCore

From the README:

Tiny Core Linux is not a traditional distribution but a toolkit to create your own customized system. It offers not only flexibility and a small footprint but a very recent kernel and a set of applications, making it ideal for custom systems, appliances, and for learning Linux, especially on the Raspberry Pi.

Introduction to piCore

- A port of Tiny Core Linux to the Raspberry Pi.
 - Tiny Core x86 based
- Same basic philosophy and architecture
- Much of the documentation and on line guidance is applicable
- Caution: Many packages available on Tiny Core have not been, and may never be, ported to piCore.

piCore architecture

- / is a RAM drive
- executables are read-only loopback mounts
 - resilient to power loss
- stripped down
 - documentation optional
 - busybox
 - simple, single run level, script based init

piCore Architecture

- base environment, boot to console, is 36M
- whole operating environment for flokk is 41.7M storage, 128M RAM
- Can strip down to the minimum components necessary for application

piCore 9.0

- Current version is 9.0.3
 - 4.9.22 kernel
 - glibc 2.25
 - busybox 1.26.2
 - 1300 extensions
- X Window available
 - FLWM, XFCE

piCore 9.0

- Development tools
 - gcc 7.2.0
 - MicroPython 1.91-31
 - perl 5.24.0
 - Python 3.5.2, 3.6.0
- Warning: will not boot on a Pi 3 Model A+ or Pi 3 Model B+

piCore 10

- In beta
 - 4.19 kernel
 - glibc 2.28
 - gcc 8.2.0
 - busybox 1.29.3
 - many extensions missing
- Tiny core (X86) 10 has just gone to beta 1
 - piCore progress should follow shortly

Raspberry Pi Zero W

Exactly what I needed:

- 512M ram
- WiFi
- USB is a USB OTG port
 - can be placed into device mode
- UART
- Python

Getting started

- Get a Raspberry Pi
 - 3 Model B, Zero W, Zero, 2 Model B
- Download piCore
 - http://tinycorelinux.net/9.x/armv6/releases/Rpi/
- Unzip
- Copy image to micro SD card

– dd

Getting started

- Repartition
 - cfdisk
 - Easier to do with linux host if you got one
 - Include a swap partition
- Put SD card into Pi
- Boot
- Use tce-ab to load applications
- filetool.sh -b

A simple embedded device

- CKUA audio player
 - Get 9.03 booting
 - Use tce-ab
 - Install alsa, cmus, and screen extensions
 - Add to /opt/bootlocal.sh:

```
screen -d -m cmus
sleep 5
cmus-remote -l "http://ckua.streamon.fm:8000/CKUA-64k-m.mp3"
sleep 5
cmus-remote -p
```

- filetool.sh -b

flokk

- piCore 8.1.5
- 5300 lines of Python 3.5
- Functionality:
 - Asynchronous, threaded
 - Excel XML based workbook manipulation
 - Online and at hand verified software updates
 - USB storage device emulation
 - .ini configuration file
 - WiFi credential and connection manager
- \$1k in hardware, 300 hours effort

- Platform is stable and reliable
- Python libraries avoid a lot of the grunt work
- Plentiful online resources:
 - documentation
 - code samples
 - problem resolution

- Make "filetool.sh -b" your mantra
- Easy to add a partition for storage, but be careful not to undo failure resiliency
- Automated python module installation (pip) does not work
 - download and build your own tcz

- Building .tcz files is easy
 - mirror directory tree
 - copy files
 - mksquashfs
- Not all kernel modules are included
 - most are available

- Setting time zone is a pain
 - edit /mnt/mmcblk0p1/cmdline.txt
 - add "tz=MST+7MDT,M3.2.0/2,M11.1.0/2"
- If you can't install extensions, you have run out of loopback devices
 - edit /mnt/mmcblk0p1/cmdline.txt
 - add "max_loop=XX"

- Gadget mode is not for sissies
- Buying Pi Zero boards individually
 - Can buy low cost packages at canakit.ca
 - Can buy individual boards in bulk directly from Raspberry Pi foundation
 - suzie@raspberrypi.org

Solon Technology Consulting Services

- Development
- Appplication management
- Project management
- Audio visual
- Contact
 - cuug.ab.ca/~olsonm
 - olsonm@cciwireless.ca

